High-Order Multiscale Finite Element Method for Elliptic Problems
نویسندگان
چکیده
In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulation suggested in [14] to simplify the implementation and to improve the accuracy. The method is natural for high-order finite element methods used with advantage to solve the coarse grained problem. We prove optimal error estimates in the case of periodically oscillating coefficients and support the findings by various numerical experiments.
منابع مشابه
Reduced order modeling techniques for numerical homogenization methods applied to linear and nonlinear multiscale problems
The characteristic of effective properties of physical processes in heterogeneous media is a basic modeling and computational problem for many applications. As standard numerical discretization of such multiscale problems (e.g. with classical finite element method (FEM)) is often computationally prohibitive, there is a need for a novel computational algorithm able to capture the effective behav...
متن کاملAn Efficient High Order Heterogeneous Multiscale Method for Elliptic Problems
We propose an efficient heterogeneous multiscale finite element method based on a local least-squares reconstruction of the effective matrix using the data retrieved from the solution of cell problems posed on the vertices of the triangulation. The method achieves high order accuracy for high order macroscopic solver with essentially the same cost as the linear macroscopic solver. Optimal error...
متن کاملReduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
A new finite element method for the efficient discretization of elliptic homogenization problems is proposed. These problems, characterized by data varying over a wide range of scales cannot be easily solved by classical numerical methods that need mesh resolution down to the finest scales and multiscale methods capable of capturing the large scale components of the solution on macroscopic mesh...
متن کاملA Multiscale Finite Element Method for Numerical Homogenization
This paper is concerned with a multiscale finite element method for numerically solving second order scalar elliptic boundary value problems with highly oscillating coefficients. In the spirit of previous other works, our method is based on the coupling of a coarse global mesh and of a fine local mesh, the latter one being used for computing independently an adapted finite element basis for the...
متن کاملHigh-Dimensional Finite Elements for Elliptic Problems with Multiple Scales
Elliptic homogenization problems in a domain Ω R d with n + 1 separate scales are reduced to elliptic problems in dimension (n + 1)d. These one-scale problems are discretized by a sparse tensor product finite element method (FEM). We prove that this sparse FEM has accuracy, work, and memory requirements comparable to those in a standard FEM for singlescale problems in Ω, while it gives numerica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 12 شماره
صفحات -
تاریخ انتشار 2014